— Reading -

1. Read Quickly 8.1 up to p .342 (omit Sect. 8.1.1). Read 8.2 (omit proofs).

- Exercises -

2. Harmonic functions. Exercise cancelled (we'll do it later).
3. A partial differential equation. Find all differentiable functions defined on \mathbb{R}^{2} such that

$$
\frac{\partial f}{\partial x}(x, y)=x y^{2}, \quad \frac{\partial f}{\partial y}(x, y)=x^{2} y
$$

for every point $(x, y) \in \mathbb{R}^{2}$.
— Problems -
4. The derivative of a bilinear function Let $B: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a bilinear function, i.e., $\forall y, x \mapsto B(x, y)$ is linear and $\forall x, y \mapsto B(x, y)$ is linear. Prove that B is differentiable at any point (x, y) and that $d B(x, y) \cdot\left(h_{1}, h_{2}\right)=B\left(x, h_{1}\right)+B\left(h_{2}, y\right) B\left(h_{1}, y\right)+B\left(x, h_{2}\right)$. Remark: $\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$ can be identified to $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \in$ $\mathbb{R}^{2 n}$ so we use on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ the Euclidean norm of $\mathbb{R}^{2 n}:\|(x, y)\|:=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}+y_{1}^{2}+\ldots, y_{n}^{2}}$.
5. Euler's relation. Let f be a function of class \mathcal{C}^{1} defined on an open set U in \mathbb{R}^{n}. We say that f is homogenous of degree k if for every $x \in U$ and every $\lambda \in \mathbb{R}$ such that $\lambda x \in U$, we have $f(\lambda x)=\lambda^{k} f(x)$.
(a) Prove the Euler's relation: for every $x=\left(x_{1}, \ldots, x_{n}\right) \in U$, we have $\sum_{i=1}^{n} x_{i} D_{i} f(x)=n f(x) k f(x)$.
Hint: let $g(\lambda):=f(\lambda x)$ and show that $g^{\prime}(1)$ equals both $k f(x)$ and $d f(x) . x$.
(b) We assume that $k \geq 2$. Show that, for every i, the partial derivative $D_{i} f$ is homogenous. What is its degree?
Hint: let $h\left(x_{i}\right):=f(\lambda x)$ and show that $h^{\prime}\left(x_{i}\right)$ equals both $\lambda^{k} D_{i} f(x)$ and $\lambda D_{i} f(x)$.
6. The space of continuous functions on $[0,1]$ is not too big. Show that $C[0,1]$ is separable, i.e., there exists a subset that is dense and countable.
Remark: here we use the sup-norm on $C[0,1]$.

