- Reading -

1. Read Quickly 8.1 up to p.342 (omit Sect. 8.1.1). Read 8.2 (omit proofs).

— Exercises —

- 2. Harmonic functions. Exercise cancelled (we'll do it later).
- 3. A partial differential equation. Find all differentiable functions defined on \mathbb{R}^2 such that

$$\frac{\partial f}{\partial x}(x,y)=xy^2, \quad \frac{\partial f}{\partial y}(x,y)=x^2y$$

for every point $(x, y) \in \mathbb{R}^2$.

— Problems —

- 4. The derivative of a bilinear function Let $B : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be a bilinear function, i.e., $\forall y, x \mapsto B(x, y)$ is linear and $\forall x, y \mapsto B(x, y)$ is linear. Prove that B is differentiable at any point (x, y) and that $dB(x, y) \cdot (h_1, h_2) = B(x, h_1) + B(h_2, y) B(h_1, y) + B(x, h_2)$. *Remark:* $((x_1, \dots, x_n), (y_1, \dots, y_n)) \in \mathbb{R}^n \times \mathbb{R}^n$ can be identified to $(x_1, \dots, x_n, y_1, \dots, y_n) \in \mathbb{R}^{2n}$ so we use on $\mathbb{R}^n \times \mathbb{R}^n$ the Euclidean norm of \mathbb{R}^{2n} : $||(x, y)|| := \sqrt{x_1^2 + \dots + x_n^2 + y_1^2 + \dots, y_n^2}$.
- 5. Euler's relation. Let f be a function of class C^1 defined on an open set U in \mathbb{R}^n . We say that f is homogenous of degree k if for every $x \in U$ and every $\lambda \in \mathbb{R}$ such that $\lambda x \in U$, we have $f(\lambda x) = \lambda^k f(x)$.
 - (a) Prove the Euler's relation: for every $x = (x_1, ..., x_n) \in U$, we have $\sum_{i=1}^n x_i D_i f(x) = nf(x) kf(x)$. *Hint: let* $g(\lambda) := f(\lambda x)$ *and show that* g'(1) *equals both* kf(x) *and* df(x).x.
 - (b) We assume that k ≥ 2. Show that, for every *i*, the partial derivative D_if is homogenous. What is its degree? *Hint:* let h(x_i) := f(λx) and show that h'(x_i) equals both λ^kD_if(x) and λD_if(x).
- 6. The space of continuous functions on [0, 1] is not too big. Show that C[0, 1] is separable, i.e., there exists a subset that is dense and countable. *Remark: here we use the sup-norm on* C[0, 1].